

Highlights of NASA Technical Report on Performance and Cost of Cloud v. On-Premises HPC Solutions¹

Full NASA Study Available at: https://www.nas.nasa.gov/assets/pdf/papers/NAS_Technical_Report_NAS-2018-01.pdf

Executive Summary

NASA's High-End Computing Capability (HECC) Project is periodically asked if it could be more cost effective through the use of commercial cloud resources. To answer the question, HECC's Application Performance and Productivity (APP) team undertook a performance and cost evaluation comparing three domains: two commercial cloud providers, Amazon and Penguin, and HECC's in-house resources—the Pleiades and Electra systems.

All runs on HECC resources were faster, and sometimes significantly faster, than runs on the most closely matching Amazon Web Services (AWS) resources. In all cases, the full cost of running on HECC resources was less than the lowest possible compute-only cost of running on AWS.

Significant Findings

- 1. To run the full set of the NPBs, AWS was 5.8-12 times more expensive than HECC, depending on the processor type used. For the full-sized applications, AWS was in the best case 1.9 times more expensive.
- 2. The NPB runs at POD were 4.7 times more expensive than equivalent runs at HECC. The full sized applications were 5.3 times more expensive.
- 3. Tightly-coupled, multi-node applications from the NASA workload take somewhat more time when run on cloudbased nodes connected with HPC-level interconnects; they take significantly more time when run on cloud-based nodes that use conventional, Ethernet-based interconnects.
- 4. Commercial clouds do not offer a viable, cost-effective approach for replacing in-house HPC resources at NASA.

Conclusion

Results show that large applications with tightly coupled communications perform worse on cloud resources than on similar resources at HECC. In addition, per-hour use of cloud resources is more expensive than the full cost of using similar resources at HECC. Taken in combination, the data leads to the conclusion that:

"Commercial clouds do not offer a viable, cost-approach for replacing in-house HPC resources at NASA."

¹ NAS Technical Report NAS-2018-01; Evaluating the Suitability of Commercial Clouds for NASA's High

Performance Computing Applications: A Trade Study. S. Chang, R. Hood, H. Jin, S. Heistand, J. Chang1, S. Cheung, J. Djomehri, G. Jost, D. Kokron; NASA Advanced Supercomputing Division, NASA Ames Research Center

Study's Performance and Cost Comparison²

			etera Press on Solarity Contains				
			# of AWS				AWS
		# of HECC	Ŭ				Oregon
		Skylake	(Skylake)	HECC time	HECC full	AWS time	compute
Benchmark	NCPUS	nodes	instances	(sec)	cost	(sec)	cost
bt.D	256	7	8	79.83	\$0.16	146.73	\$1.00
bt.D	1024	26	29	20.52	\$0.15	92.08	\$2.27
cg.D	256	7	8	34.3	\$0.07	614.2	\$4.18
cg.D	512	13	15	17.24	\$0.06	650.58	\$8.29
cg.D	1024	26	29	13.51	\$0.10	719.22	\$17.73
ep.D	256	7	8	4.82	\$0.01	4.93	\$0.03
ep.D	512	13	15	2.44	\$0.01	2.46	\$0.03
ep.D	1024	26	29	1.24	\$0.01	1.19	\$0.03
ft.D	256	7	8	27.41	\$0.05	526.08	\$3.58
ft.D	512	13	15	14.84	\$0.05	349.26	\$4.45
ft.D	1024	26	29	8.05	\$0.06	243.06	\$5.99
is.D	256	7	8	2.64	\$0.01	71.5	\$0.49
is.D	512	13	15	1.45	\$0.01	48.28	\$0.62
is.D	1024	26	29	0.84	\$0.01	44.72	\$1.10
lu.D	256	7	8	57.58	\$0.11	121.6	\$0.83
lu.D	512	13	15	32.37	\$0.12	106.79	\$1.36
lu.D	1024	26	29	17.17	\$0.13	99.3	\$2.45
mg.D	256	7	8	8.18	\$0.02	39.99	\$0.27
mg.D	512	13	15	3.36	\$0.01	15.56	\$0.20
mg.D	1024	26	29	1.82	\$0.01	16.44	\$0.41
sp.D	256	7	8	101.52	\$0.20	211.48	\$1.44
sp.D	1024	26	29	20.32	\$0.15	172.02	\$4.24
Total Cost					\$1.50		\$60.98
Estimated AW	/S spot cost (3	80% of on-der	mand cost)				\$18.29

				# of AWS]	
			# of HECC	c4.8xlarge						
			Haswell	(Hasewell)	HECC time	HECC full	AWS time	AWS Oregon	AWS Gov	
Benchmark	Case	NCPUS	nodes	instances	(sec)	cost	(sec)	compute cost		
ATHENA++	SBU2	1024	43	57	2268	\$14.48	2298	\$57.89	\$69.68	
ATHENA++	SBU2	2048	86	114	1177	\$15.03	1374	\$69.22	\$83.32	
ECCO	NTR1	120	5	7	120	\$0.09	173	\$0.54	\$0.64	
ECCO	NTR1	240	10	14	65	\$0.10	140	\$0.87	\$1.04	
ENZO	SBU2	196	9	11	1827	\$2.44	2266	\$11.02	\$13.26	
FVCore	SBU1	1176	49	66	1061	\$7.72	1104	\$32.20	\$38.76	
nuWRF	SBU2	1700	71	95	529	\$5.58	1302	\$54.66	\$65.80	
OpenFOAM	Channel395	48	2	3	4759	\$1.41	7646	\$10.14	\$12.20	
OpenFOAM	Channel395	144	6	8	12547	\$11.17	20771	\$73.44	\$88.39	
OpenFOAM	Channel395	288	12	16	10194	\$18.16	23013	\$162.73	\$195.87	
Total Cost						\$76.18		\$472.71	\$568.96	
Estimated AWS spot cost (30% of on-demand cost) \$141.77										
Estimated AWS pre-leasing cost (70% of US-gov cost)										

² Appendix: NAS Technical Report NAS-2018-01;Evaluating the Suitability of Commercial Clouds for NASA's High Performance Computing Applications: A Trade Study.